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Abstract
The absorption spectra of KZnF3:Tl+ and KMgF3:Tl+ crystals have been
measured over the energy range 1.5–6.4 eV at temperatures of 10–300 K. A
wide absorption band with a clear doublet structure identified as an absorption
A band of Tl+ impurity centres is observed for both crystals. The position of
the band, its bandwidth and the distribution of absorption intensity between the
two components of the band are temperature dependent in the range T > 65 K.

All features of the absorption spectra of the crystals studied are explained
within the frameworks of the conventional theory on the basis of the Frank–
Condon principle and the semiclassical picture of crystal lattice vibrations. The
band shapes calculated by the Monte Carlo method are in satisfactory agreement
with observed ones.

1. Introduction

Crystals of alkali halides doped with mercury-like ions have been traditional objects of
experimental and theoretical investigation for several decades; a number of reviews are devoted
to optical properties of such crystals [1–3]. Fluorine crystals doped with ions having an
external ns2 shell (‘s2 ions’) are much less investigated, though these objects are interesting
as active materials for tunable solid-state lasers and scintillators [4–6]. Among the fluorine
compounds the perovskite-like ABF3 crystals are of special interest. Due to the high symmetry
and technological efficiency of the growth process these crystals are good model objects for
fundamental studies and in some cases they are of great practical value. Thus, KZnF3 crystals
activated by Cr3+, Co2+ and Ni2+ ions and KMgF3 crystals with colour centres are used as
active media for lasers in the near-infrared region [7–9].

We have investigated the optical properties of KZnF3:Tl+ and KMgF3:Tl+ crystals, and
in this work we report the results of the absorption spectra analysis. The absorption and
luminescence spectra of Tl+ centres in KZnF3 crystal are slightly shifted to the long-wavelength
region in comparison with those for KMgF3 crystal, studied previously by Scacco et al [10,11].
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The general picture of the absorption spectrum, the structure and the widths of the
absorption bands in the fluoroperovskites KMgF3 and KZnF3 doped with Tl+ ions are similar to
those for alkali halide crystals. In both types of crystal, thallium centres are believed to possess
cubic symmetry: the admixed ion and its nearest surroundings form an octahedral complex
[TlF6]5− in alkali halides, while in fluoroperovskites they form a complex, [TlF12]11−, with
fluorine ions at the centres of the cube edges (figure 1), the Zn2+ (Mg2+) ions being at cube
apices.

Figure 1. The unit cell for the KZnF3:Tl+ and KMgF3:Tl+ crystals.

A cubic crystal field does not split the electronic p states of Tl+ ions; therefore the energy
level schemes spanning the states of the ground 6s2 and the first excited 6s6p configurations
(figure 2) look qualitatively the same for a free ion and for an ion at any lattice site with cubic
symmetry. The scheme is not changed if the atomic single-electron s and p functions are
replaced by the corresponding molecular orbitals of a1g and t1u types.

Figure 2. Energy levels of an s2 ion in a crystal field of cubic symmetry.

The broadening of the absorption lines (formation of bands) in crystals and the band
structure are due to the crystal lattice vibrations. The appropriate theory, on the basis of the
Jahn–Teller effect, the semiclassic picture of vibrations and the Frank–Condon principle, was
elaborated in detail and widely used for interpretation of different optical phenomena in doped
alkali halide crystals (see [1–3]). We will use this theory in a slightly modified form to analyse
our measurements, considering three vibrational modes.



Optical absorption of KZnF3:Tl+ and KMgF3:Tl+ crystals 6249

In the next section the experimental part of the study is presented. Then we reproduce
the principal points of the conventional theory with some modifications which allow us to
consider in a unified form the linear electron–lattice interactions and those that are quadratic in
atomic displacements, and to take into account the differences of the effective frequencies of the
interaction modes. Also some misprints which are present in several frequently cited papers are
corrected. Further, we present the results of modelling the absorption spectra with the Monte
Carlo method and compare our results with the previous data for KMgF3 crystal [10,12]. The
luminescence spectra of KZnF3:Tl+ and KMgF3:Tl+ crystals will be discussed in a forthcoming
paper.

2. Experimental procedure and results

The KZnF3 and KMgF3 single crystals were grown from the melt in graphite crucibles by the
Bridgman–Stockbarger method. Dried KF and ZnF2 or MgF2, purified by recrystallization
from the melt, were used as starting materials. Thallium fluoride, TlF, was used to activate
the crystals by means of Tl+ ions. The concentration of TlF in the melt was 0.5 mol%. The
crystals were grown in an argon atmosphere fluorinated by the gaseous products of Teflon
pyrolysis. The samples grown were of good optical quality and had a cylindrical form 10 mm
in diameter and up to 50 mm in length.

The absorption spectra were measured over the energy range 1.5–6.4 eV using a Specord-
M40 spectrophotometer. To investigate the temperature dependencies in the range 10–300 K,
an Oxford Instruments CF-1204 optical cryostat was used.

In the frequency range studied, one wide absorption band is observed for both KZnF3:Tl+

and KMgF3:Tl+ crystals, which has a clear doublet structure at room temperature with the
maxima positions at 5.93 and 6.05 eV for KZnF3:Tl+, and 6.04 and 6.18 eV for KMgF3:Tl+.
The band shape is practically unchanged in the temperature range 10–65 K. The shapes of
the absorption bands at 10, 150 and 300 K are shown in figure 3 (KZnF3:Tl+) and figure 4
(KMgF3:Tl+). The absorption data for KMgF3:Tl+ almost completely correspond to the absorp-
tion A-band data for the same crystal obtained previously in [10].

Figure 3. The temperature dependence of the
absorption A band of the Tl+ ion in the KZnF3 crystal.

As the temperature decreases, the bandwidth decreases, maxima shift to higher energies
and the intensity redistributes to the benefit of a long-wavelength component, the integral
intensity being constant. The absence of temperature dependence of the band integral intensity
evidences that this band corresponds to an allowed transition. Comparison with literature data
allows us to attribute the absorption band to the 1�1g → 3�4u transition of the Tl+ centre
(A band), the band structure being due to the Jahn–Teller effect in an excited state [1–3, 10].
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Figure 4. The temperature dependence of the absorption A band of the Tl+ ion in the KMgF3
crystal.

3. Theoretical model

The initial Hamiltonian for two external electrons of a cubic Tl+ centre in a crystal is chosen
in the adiabatic approximation as follows:

H = H0 +Hee +Hso +Hel (1)

where H0 is the conventional single-electron approximation for a cubic quasimolecule which
may include one or more nearest coordination spheres of the Tl+ ion, all ions being located
at their equilibrium lattice positions. Hee is the Coulomb repulsion between two electrons,
Hso is the spin–orbit interaction,Hel is the electron–lattice interaction which is usually written
as an expansion up to the first and second powers of ion displacements from the equilibrium
positions:

Hel = H
(1)
el +H(2)

el =
∑
αti

V
(α)
i (t)Q

(α)
i (t) +

1

2

∑
αti,βt ′j

V
(αβ)

ij (t, t ′)Q(α)
i (t)Q

(β)

j (t ′). (2)

The ionic displacements are presented here as symmetric coordinates transforming like the
ith row of the irreducible representation �α of the cubic group Oh, the index t distinguishing
identical representations.

All matrix elements ofHel connecting the states with s2 and sp configurations are expressed
through the single-electron matrix elements connecting s or p states. The p (t1u) functions
transform according to the �4u representation, [�2

4u] = �1g + �3g + �5g; therefore the matrix

elements of the operators V (1g), V (3g)
i , V (5g)

i may only differ from zero for those functions.
Since �1g, �3g, �5g enter [�2

4u] once, the sets of matrix elements of V (α)
i (t) for different t differ

only by a factor (the Wigner–Eckart theorem), so H(1)
el may effectively be rewritten as

H
(1)
el =

∑
αi

V α
i {c1αQ

(α)
i (1) + c2αQ

(α)
i (2) + · · ·}

= V1Q
′
1(�1g) + (V2Q

′
2 + V3Q

′
3)(�3g) + (V4Q

′
4 + V5Q

′
5 + V6Q

′
6)(�5g). (3)

Here the Q′
i are effective ‘interaction modes’ (a term coined by Toyozawa and Inoue [13]),

composed of all symmetric coordinates of the corresponding type. In the present model the
reduced matrix elements of the operators V (α)

i are considered as model parameters, so there is
no necessity to restrict the impurity centre to the nearest neighbours of the Tl+ ion. In what
follows we will take into account only the interaction modes; therefore the primes on the Q′

i

in (3) will be omitted.
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The second-order term H
(2)
el may be rearranged in a similar manner to H(1)

el . Retaining,
for the sake of brevity, only the interaction modes, we rewrite H(2)

el in an effective form:

H
(2)
el = V

(1)
1 Q2

1 + V (2)
1 (Q2

2 +Q2
3) + V (3)

1 (Q2
4 +Q2

5 +Q2
6) + (V (1)

2 Q2 + V (1)
3 Q3)Q1

+ (V
(1)

4 Q4 + V (1)
5 Q5 + V (1)

6 Q6)Q1 + V (2)
2 2Q2Q3 + V (2)

3 (Q2
2 −Q2

3)

+ V
(2)

4 Q4(−Q3/2 +
√

3Q2/2) + V (2)
5 Q5(−Q3/2 −

√
3Q2/2)

+ V
(2)

6 Q6Q3 + V (3)
2 (Q2

4 −Q2
5) + V (3)

3 (2Q2
6 −Q2

4 −Q2
5)/

√
3

+ V
(3)

4 Q5Q6 + V (3)
6 Q4Q5 (4)

where the V (α)
1 are cubic invariants; the pairs of electronic operators (V (α)

2 , V
(α)

3 ) and the
respective quadratic combinations of Qi transform according to the �3g representation as θ
and ε[(x2 − y2), (3z2 − r2)/

√
3], respectively; the triplets (V (α)

4 , V
(α)

5 , V
(α)

6 ) transform as yz,
zx, xy according to the�5g representation. The electron–lattice HamiltonianHel = H

(1)
el +H(2)

el

may be presented in a unified form:

Hel =
∑

i=1,...,6

Vi · Qi (5)

if one introduces the ‘4-vectors’

Vi = (Vi, V
(1)
i , V

(2)
i , V

(3)
i )

Q1 = (Q1,Q
2
1,Q

2
2 +Q2

3,Q
2
4 +Q2

5 +Q2
6)

Q2 = (Q2,Q1Q2, 2Q2Q3,Q
2
4 −Q2

5)

Q3 = [Q3,Q1Q3,Q
2
2 −Q2

3, (2Q
2
6 −Q2

4 −Q2
5)/

√
3]

Q4 =
[
Q4,Q1Q4,Q4

(
−1

2
Q3 +

√
3

2
Q2

)
Q5Q6

]

Q5 =
[
Q5,Q1Q5,Q5

(
−1

2
Q3 −

√
3

2
Q2

)
,Q4Q6

]
Q6 = (Q6,Q1Q6,Q3Q6,Q4Q5)

(6)

and considers Vi · Qi as scalar products of those ‘vectors’. To consider only the linear Jahn–
Teller effect, it is sufficient to restrict Hel to the terms V1 · Q1 +

∑
ViQi , i = 2, . . . , 6.

An initial set of twelve two-electron functions of the sp configuration for construction
of the matrix (Hso +Hel) is usually chosen in the simplest form corresponding to irreducible
representations of the Oh group and spin multiplets and diagonalizing H0 +Hee [13]:

|3�1u〉 = 1√
3
{|X−Sx〉 + |Y−Sy〉 + |Z−Sz〉}

|3�4u, x〉 = i√
2
{|Y−Sz〉 − |Z−Sy〉}

|3�3u, θ〉 = 1√
2
{|X−Sx〉 − |Y−Sy〉}

|3�3u, ε〉 = 1√
6
{2|Z−Sz〉 − |X−Sx〉 − |Y−Sy〉}

|3�5u, yz〉 = 1√
2
{|Y−Sz〉 + |Z−Sy〉}

|1�4u, x〉 = |X+S0〉.

(7)
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Only one function is given here for the�4u and�5u representations; other functions are obtained
by cyclic permutations of x, y, z. The spin singlet is

|S0〉 = 1√
2

{∣∣∣∣1

2
,−1

2

〉
−

∣∣∣∣−1

2
,

1

2

〉}
.

The spin-triplet functions are

|Sx〉 = − 1√
2

{∣∣∣∣1

2
,

1

2

〉
−

∣∣∣∣−1

2
,−1

2

〉}

|Sy〉 = i√
2

{∣∣∣∣1

2
,

1

2

〉
+

∣∣∣∣−1

2
,−1

2

〉}

|Sz〉 = 1√
2

{∣∣∣∣1

2
,−1

2

〉
+

∣∣∣∣−1

2
,

1

2

〉}
.

The orbital two-electron functions are

|X±〉 = 1√
2
{|spx〉 ± |pxs〉}

and so on.
In what follows we will use the following designations of the electron–lattice interaction

parameters:

a = 〈s|V1|s〉 + 〈px |V1|px〉
b = 〈px |V2|px〉
c = 〈py |V4|pz〉

(8)

in the case of triplet functions, and primes will be used for the case of singlet functions. With
these designations the matrix of the Hamiltonian (1) based on the state functions (7) is as
follows:


〈3�1u|
〈3�4u|
〈3�3u|
〈3�5u|
〈1�4u|







A − ζ/2 0 (H13) (H14) 0

0 A + (H22) (H23) (H24) λζ/
√

2

(H31) (H32) B + (H33) (H34) 0

(H41) (H42) (H43) B + (H44) 0

0 λζ/
√

2 0 0 C + (H55)


 (9)

where

A = EA + a · Q1

B = EB + a · Q1

C = EC + a′ · Q1.

Here ζ is a spin–orbit coupling constant; the factor λ takes into account the difference between
radial functions in singlet and triplet spin states. The energies EA,B,C are shown in figure 2
and may be expressed through Coulomb (F ) and exchange (G) integrals. The submatrices
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(Hij ) = (Hji)
+ have the following forms:

(H13) =
√

2

3
(b · Q2, b · Q3)

(H14) =
√

2

3
(c · Q4, c · Q5c · Q6)

(H22) =

 〈3�4u, x|

〈3�4u, y|
〈3�4u, z|




∣∣∣∣∣∣∣
− 1

2b · (Q2 − 1√
3
Q3) − 1

2c · Q6 − 1
2c · Q5

− 1
2c · Q6

1
2b · (Q2 + 1√

3
Q3) − 1

2c · Q4

− 1
2c · Q5 − 1

2c · Q4 − 1√
3
b · Q3

∣∣∣∣∣∣∣ .
(10)

The matrix (H44) is obtained from (H22) by changing the sign before c, and (H55) is obtained
from (H22) by making the changes b/2 → − b′, c/2 → − c′. Further,

(H33) =
( 〈3�3u, θ |

〈3�3u, ε|
) ∣∣∣∣∣

− 1√
3
b · Q3 − 1√

3
b · Q2

− 1√
3
b · Q2

1√
3
b · Q3

∣∣∣∣∣
(H32) =

∣∣∣∣∣
i
2c · Q4

i
2c · Q5 −ic · Q6

i
√

3
2 c · Q4 −i

√
3

2 c · Q5 0

∣∣∣∣∣

(H24) =

∣∣∣∣∣∣∣
i
2b · (Q2 +

√
3Q3) − i

2c · Q6
i
2c · Q5

i
2c · Q6

i
2b · (Q2 − √

3Q3) − i
2c · Q4

− i
2c · Q5

i
2c · Q4 −ib · Q2

∣∣∣∣∣∣∣
(H34) =

∣∣∣∣ − 1
2c · Q4

1
2c · Q5 0

1
2
√

3
c · Q4

1
2
√

3
c · Q5 − 1√

3
c · Q6

∣∣∣∣ .

(11)

The twelve-dimensional matrix (9) with submatrices (10) and (11) coincides with that in the
literature [3] except for some corrections and an extended redefinition of the parameters a, b,
c and coordinates Q, which allows us to take into account the quadratic Jahn–Teller effect.

For some applications, another set of functions that diagonalize the Hamiltonian H0 +
Hee +Hso appears to be more convenient:

|3�∗
4u, i〉 = µ|3�4u, i〉 − ν|1�4u, i〉

|1�∗
4u, i〉 = µ|1�4u, i〉 + ν|3�4u, i〉

(12)

where

µ2/ν2 ≡ R = (2) + ECA)/(2)− ECA)

2) =
√
E2
CA + 2λ2ζ 2 µ2 + ν2 = 1.

The corresponding eigenvalues for the states |3�∗
4u〉 and |1�∗

4u〉 are

E∗
C,A = 1

2
(EA + EC)±).

The displacements of ions from their equilibrium positions during lattice vibrations result
in random changes (fluctuations) of the electronic spectrum of the impurity centre. The
energy spectrum obtained by diagonalization of the matrix (9) for a given set of coordinates
Q̃(Q1 −Q6) defines the momentary absorption spectra with δ-shaped lines for an absorption
centre with these Qs. There are twelve excited ‘stationary’ states (enumerated by index
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j = 1, . . . , 12 in order of energy increase) which are the linear combinations of the initial set
of functions (7):

|ψj 〉 =
∑
αi

Cαi,j (Q̃)|α, i〉. (13)

Since the electric dipole transitions from the ground state |1�1g〉 are allowed only to singlet
excited states |1�4u, x, y, z〉, the intensity for transition to a |ψj 〉 state is proportional to the
squared absolute values of the coefficients Cαi,j with α = 1�4u. The observed form of the
absorption spectra for non-polarized radiation is a result of averaging over all fluctuations Q:

F(ω) =
∑
j

1

3

∫
dw(Q̃)

∑
i=x,y,z

|C(1�4u, i, j)|2δ[h̄ω − Ej(Q̃)] (14)

where dw(Q̃) is a fluctuation probability. In the thermodynamic equilibrium state the prob-
ability is distributed according to the Gaussian law:

dw(Q̃) =
∏
α

1√
2π〈Q2

α〉
exp

(
− Q2

α

2〈Q2
α〉

)
dQα (15)

where 〈Q2
α〉 is, in appropriate units, a mean value of elastic energy connected with the

displacement Qα .
In the classic (high-temperature) limit 〈Q2

α〉 = kT /2, but at low temperatures the contrib-
ution of zero vibrations to displacements becomes significant. It may be accounted for
approximately by changing T to an effective temperature which is the mean energy of an
oscillator with an averaged frequency: kT ∗ = (h̄ωeff /2) coth(h̄ωeff /2kT ) [3]. However,
introduction of a single effective frequency for interaction modes seems to be a rather crude
approximation which can substantially distort the temperature dependence of the calculated
parameters of the spectra. We think that it is more reasonable to couple a proper frequency
with each of three modes �1g, �3g and �5g:

2〈Q2
α〉 = 1

2
h̄ωα coth

(
h̄ωα

2kT

)
. (16)

Therefore in this model, the absorption spectrum form (14) is defined by the following
parameters of the energy matrix (9):

EA, EB, EC, λζ,a(a, a1, a2, a3), b, c,a
′, b′, c′(a1 ≡ a(1), etc)

and three effective frequencies ω1(�1g), ω2(�3g), ω3(�5g) associated with each active mode
of impurity centre vibrations.

As mentioned above, the mean squared fluctuation of the ion positions in a crystal at high
temperatures is of the order of kT , so the mean splitting c

√
〈Q2〉 of impurity levels due toHel

approximately equals 0.2 eV even for comparatively high values of electron–lattice interaction
(c2 ≈ 2 eV), which is substantially less than the energy intervals E∗

BA and E∗
CA. Therefore

the diagonalization of the energy matrix can be carried out by use of the perturbation theory
as was done in the original work of Toyozawa and Inoue [13]. The three-dimensional matrix
defining energies of A-band states in the second order is as follows:

(HA) = 〈3�∗
4u|H |3�∗

4u〉 +
∑
α

′ 〈3�∗
4u|Hel|�α〉〈�α|Hel|3�∗

4u〉
E∗

A − E(�α)
(17)

where the functions (12) are used for writing down the blocks of the (Hel) matrix.
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To lower the number of fitting parameters, let us consider only the linear Jahn–Teller
effect. Then the matrix (HA) is as follows:

(HA) = E∗
A + AQ1 + A1Q

2
1 + A2(Q

2
2 +Q2

3) + A3(Q
2
4 +Q2

5 +Q2
6) + (HA)

HA
11 = B

(
Q2 − 1√

3
Q3

)
+ B2

[
2Q2Q3 − 1√

3
(Q2

2 −Q2
3)

]
+

2

3
B3(2Q

2
4 −Q2

5 −Q2
6)

HA
12 = CQ6 + C2Q6Q3 + C3Q4Q5

HA
13 = CQ5 + C2Q5

(
−1

2
Q3 −

√
3

2
Q2

)
+ C3Q4Q6

HA
22 = B

(
−Q2 − 1√

3
Q3

)
+ B2

[
−2Q2Q3 − 1√

3
(Q2

2 −Q2
3)

]
+

2

3
B3(2Q

2
5 −Q2

4 −Q2
6)

HA
23 = CQ4 + C2Q4

(
−1

2
Q3 +

√
3

2
Q2

)
+ C3Q5Q6

HA
33 = 2√

3
BQ3 +

2√
3
B2(Q

2
2 −Q2

3) +
2

3
B3(2Q

2
6 −Q2

5 −Q2
4)

(18)

where

A = a′ν2 + aµ2

A1 = a′
1ν

2 + a1µ
2

A2 = a′
2ν

2 + a2µ
2 +

1

2
µ2 b2

E∗
A − EB

+
2

3
µ2ν2 (b

′ + 1
2b)

2

E∗
A − E∗

C

A3 = a′
3ν

2 + a3µ
2 +

1

2
µ2 c2

E∗
A − EB

+
2

3
µ2ν2 (c

′ + 1
2c)

2

E∗
A − E∗

C

B = b′ν2 − 1

2
bµ2

B2 =
√

3

4
µ2 b2

E∗
A − EB

− 1√
3
µ2ν2 (b

′ + 1
2b)

2

E∗
A − E∗

C

B3 = 3

8
µ2 c2

E∗
A − EB

− 1

2
µ2ν2 (c

′ + 1
2c)

2

E∗
A − E∗

C

C = c′ν2 − 1

2
cµ2

C2 =
√

3

2
µ2 bc

E∗
A − EB

− 2√
3
µ2ν2 (b

′ + 1
2b)(c

′ + 1
2c)

E∗
A − E∗

C

C3 = −3

4
µ2 c2

E∗
A − EB

+ µ2ν2 (c
′ + 1

2c)
2

E∗
A − E∗

C

.

(19)

The form function of the absorption A band up to a normalization factor equals

FA(ω) =
∑

j=1,2,3

∫
dw(Q̃) δ[h̄ω − Ej0(Q̃)] (20)

where Ej0(Q̃) = Ej(Q̃) − E0(Q̃), Ej(Q̃) are the eigenvalues of the matrix (18), E0(Q̃) =∑
i Q

2
i is the energy of the ground state. Of course, the total absorption spectrum may be

obtained by diagonalizing the 12 × 12 matrix (9) and with a form function (14) (see, for
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instance, [12]). When the perturbation procedure is applicable, the spectrum calculated in such
a manner consists of three well separated bands with form functions (up to a normalization
factor) FA (FC) very close to that given by equation (20). In this work, we deal mainly with
the absorption A band and therefore use the simplified procedure of band-shape calculation
given above. The shape of the C band can be calculated in a similar manner.

The quadratic Jahn–Teller effect can be taken into account by minimal changes of the
matrix (18). For instance, the term b′

2ν
2 − (1/2)b2µ

2 is added to the coefficientB2 (B3, C2, C3

undergo analogous changes), leaving its structure unchanged. One may conclude that taking
into account the quadratic Jahn–Teller effect does not change the qualitative results from the
conventional linear model (cf. [2, 3]).

4. Numerical calculations of absorption spectra and discussion

We have calculated the A-band shape FA(ω) (20) for the crystals studied with the Monte Carlo
method. The matrix (18) was diagonalized for each random set Q̃ in a six-dimensional space
chosen in accordance with the distribution (15), the total number of sets being 400 000. The
value FA(ω) is proportional to the number of energy valuesEj0(Q̃) falling into the small range
(ω, ω + dω).

For calculation of the shape of the A band for KZnF3:Tl+, the following set of parameters
was used:

E∗
A = 6.03 eV EB = 7.2 eV E∗

C = 8.14 eV

R = 7
a2 = a′2 = 0.023 eV b2 = 0.49 eV b′2 = 0.25 eV
c2 = 1.69 eV c′2 = 1 eV

ai = a′
i = 0.8 i = 1, 2, 3

ω(�1, �3) = 300 cm−1 ω(�5) = 100 cm−1.

(21)

The calculation results are compared with experimental ones in figure 5.
The experimental data for KMgF3:Tl+ were fitted with the following set of theoretical

parameters:

E∗
A = 6.15 eV EB = 7.38 eV E∗

C = 8.27 eV

R = 7
a2 = a′2 = 0.023 eV b2 = 0.81 eV b′2 = 0.49 eV
c2 = 1.96 eV c′2 = 1.21 eV

ai = a′
i = 0.9 i = 1, 2, 3

ω(�1, �3) = 300 cm−1 ω(�5) = 100 cm−1.

(22)

The calculation results are compared with experimental data and calculations of [12], where
somewhat different parameters were used and only the temperature of 9 K was considered
(figure 6). There is satisfactory qualitative and, to some extent, quantitative agreement between
the experimental and calculated curves. Figure 6 shows that parameters (22) lead to a better
agreement with experimental data for temperatures T = 150 and 300 K than the parameters
of [12]. The strong broadening of the band and shift to higher energies with increase of
temperature are evidently due to a too high value of the curvature of the excited-state parabola
ke = 2.1 being used in [12].

We have also calculated the C-band shape for KMgF3:Tl+ with the parameters given in
(22). The agreement with the experimental results of Scacco et al [10] is similar to that given



Optical absorption of KZnF3:Tl+ and KMgF3:Tl+ crystals 6257

Figure 5. Absorption spectra of the KZnF3:Tl+ crystal
(solid curves) and their simulations with the parameters
of the present work (dashed curves).

Figure 6. Absorption spectra of the KMgF3:Tl+ crystal
(solid curves) and their simulations with the parameters
of the present work (dashed curves) and those of [12]
(dot-and-dash curves).

above for the A band. Again, the calculations with the parameters of [12] result in significant
overestimation of the bandwidth for high temperatures.

The parametersE∗
A,EB,E∗

C for KMgF3:Tl+ were chosen in accordance with the absorption
band positions [10]. The parameter µ2/ν2 ≡ R is approximately equal to the ratio of integral
intensities of the C and A bands and its experimental value is R = 4.8; we take a somewhat
larger value R = 7 which corresponds better to the chosen energy values. Only one energy
parameter E∗

A = 6.03 eV was fixed experimentally for KZnF3:Tl+. The values of EB and E∗
C

in (21) are obtained by the appropriate shift of the energy levels for KMgF3:Tl+.
The values in (21) and (22) show that the coupling with �5g vibration modes prevails

in the electron–lattice interaction of the crystals studied. This could have been anticipated
because of the observed distinct structure of the absorption bands, since Toyozawa and Inoue
showed [13] that only the coupling to trigonal (�5g) modes gives rise to that structure. The
noticeable temperature dependence of the band structure, which begins at temperatures of
∼70 K, allows us to conclude that the effective frequency ω(�5g) is not high, since according
to equation (16) the effective temperature T ∗

α does not depend on T in the temperature range
(0, ωα/2). Therefore ω(�5g) � 140 K (100 cm−1) and the chosen value ω(�5g) = 100 cm−1

allows us to obtain a satisfactory description of both the band structure and the bandwidth.
The low-frequency quasilocal vibration may be due to the introduction of the heavy Tl+ ion in
place of the K+ ion.

The experimental data do not allow us to fix electron–lattice interaction parameters very
precisely. It is possible to change the value of one parameter (say c2) by about a factor of
two and to change other parameters accordingly without causing serious deterioration of the
calculation results. Therefore the values of the parameters a, b, c etc given in (21), (22) should
be considered as very approximate ones.
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5. Summary

Absorption spectra of KZnF3:Tl+ and KMgF3:Tl+ crystals identified as absorption A bands
of Tl+ impurity centres were observed in the near-UV region. The band shapes for the two
crystals are similar: they have temperature-dependent doublet structures and bandwidths. The
absorption band in KZnF3:Tl+ is observed at somewhat lower energies than that in KMgF3:Tl+.

All features of the absorption spectra in the crystals studied are satisfactorily explained
within the frameworks of the conventional theory on the basis of the Frank–Condon principle
and the semiclassical picture of crystal lattice vibrations. Minimal modifications allow us to
consider in a unified way the linear electron–lattice interactions and those quadratic in atomic
displacements and to take into account the differences between the effective frequencies of
the interaction modes. The smallest frequency is defined approximately by the temperature
at which the band shape becomes temperature independent. The electron–lattice interaction
parameters are estimated from experiment with accuracy up to a factor of about 2.
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